
-AlS9 1?2 MEAR-HORN PROLOO(U) OWKE UNIV DURHAM NC DEPT OF 1
COMPUTER SCIENCE D N LOVELAND 65 NAY 6? CS-l9l7-±4
ARO-21213. 3-NA DRAR2-04-K-SS?2

UNCLASSIFIED F/G 12/5

'MENEEEEEEEE
I flflflfl.~

- .miiii
11 ! '

1111 j_---_--

* - j17.-. -T"tf

CS- 1987-14

NEAR-HORN PROLOG

D.WV. Loveland

Department of Computer Science
Duke University

May 5, 1987

tit

INN

7t .t fl-

.ga 4-.--..--- ~ -~~.'- . 6

- ,V71-1

.DEPARTMENT .. 7<

.,-COMPUTER SCIENCaELECTE.

7 % SEP23_198iU

DVKLUNI II:% ITY. .

[i__i _ wo n be3UPsw
fao pble oa1maucmdum"b

j~xftth"= lm tr.L.

V -i-~S.~*/~V--*V-'..4-...%
4-~~~~ : .,e . -

I..

CS-1987-14

NEAR-HORN PROLOG

D.W. Loveland

Department of Computer Science
Duke University

May 5, 1987

pTICSEP 2 1 987

" E

Thls document bi "e.. ap i
to public relc a go V14

tU n °n =,"rmil"I", .

g~7 9

NEAR-HORN PROLOG

D.W. Loveland
Computer Science Department

Duke University
Durham, NC 27706 USA

Abstract. We propose an extension to Prolog that handles clause sets that are Horn and
almost-Horn in a manner that emphasizes clarity, efficiency, and minimal deviation from stan-
dard Prolog. Although one version of near-Horn Prolog is complete under appropriate search
strategies, we focus on incomplete variants that allow fast processing. Negation in the program
is handled correctly, although within a positive implication logic extension of Horn logic. Pro-
cessing speed degradation is directly proportional to the distance the program is from a Horn
clause set.

Accession For

DTIC TAB
Unannounc ed

Distribution/ QUALM

Availability Codes "sPFCTt

Avail and/or 2

This research has been partially supported by the Army Research Office under Grant DAAG29-84-K-0072.

This paper will be presented at the Fourth International Conference on Logic Programming, May, 1987, in Melbourne.
Australia.

* Iw

1. INTRODUCTION.

An extension to standard Prolog is presented that handles Horn clause sets in the usual
manner of Prolog and handles a further class of problems that permits disjunctive conclusion
(multiple heads) and negated facts. The system we will emphasize is a very natural extension of
Prolog and promises to work particularly well when the clause set is (Horn or) near-Horn, in a
suitable sense. To emphasize that this system is intended for clause sets that are not far from
Horn sets we call the system near-Horn Prolog (or nH-Prolog). A modest extension of what we
currently view as the most attractive implementation version of nH-Prolog is first-order com-
plete (as standard theorem provers are) if iterative deepening is used as a search control rather
than the depth-first search employed by Prolog. (The system is complete as a refutation sys-
tem, but not capable of finding all logical consequences.)

Prolog has proved to be amazingly successful considering that it is the first implementation
of the concept of logic programming. In spite of obvious flaws in the nature of depth-first
search, unsound unification (this flaw has to go!), and the restriction to Horn clauses, the suc-
cess of Prolog has been dramatic. There are good reasons for this. First is the surprising
robustness of Horn clause programs for representing what we wish to compute; second, and
closely related, is the simplicity of the depth-first problem reduction format such a restriction
allows. Third, and closely related also, is the great speed of processing that can be realized by
clever implementation techniques exploiting the inherent simplicity. Extensions to Prolog to
date have not been readily accepted because they violate too strongly the properties that make
Prolog so successful. The device "negation as failure" [1] survives because, in spite of obvious
flaws, pragmatically it works better than its alternatives. We will propose a honest negation
that appears to work as computationally effectively as negation as failure. (Negation as failure
does retain a role here, for use with negative queries.)

Prolog-like systems that are complete proof procedures are well-known. Indeed, the group
that designed PROLOG (Colmerauer, Roussel, etc.) first modified an SL-resolution theorem
prover [61 built by Roussel [5]. Stickel's Prolog Technology Theorem Prover (PTTP) directly
extends pure Prolog to a complete system (using an iterative deepening or recomputed depth-
first search rather than straight depth-first search). The two systems mentioned above are
closely related in concept because SL-resolution is a modification of the Model Elimination (ME)
procedure [7], [8] which is the basis of the PTTP system. While the ME extension to linear
input resolution (the heart of PROLOG) has real attractions, it is slower than desirable due to
an auxiliary list, often of substantial size, that must be scanned at each call. We clarify this
later. We also have an auxiliary list but the need to access it is quite limited.

2. SOME APPROACHES TO EXTENDING PROLOG.

In this section we review the two methods of extending Prolog mentioned earlier, negation
as failure and ME (PTTP), as important extension methods our new method must be measured
against. (There are other methods of extension suggested recently, for example, see [3], [4]. A
new general theorem-proving method that extends Prolog along the lines of [10] has been
announced in Plaisted [11].) The method of presentation will be a running example, admittedly
a trivial one, both for clarity and because of space limit itions.

2

The notation we use is the Edinburgh version, close to Clocksin and Mellish [2]. We
assume familiarity with this terminology for Prolog. The example is that used in Loveland [8]
to illustrate how ME extends the problem reduction method. The example is propositional, but
a later example illustrates some characteristics of our system for non-ground presentations.

Figure 1 presents our running example, where the usual propositional letters denoting
statements are replaced by Prolog atoms. The axioms are presented in typical propositional
form; the traditional associated propositional assertion for the problem can be formed as an
implication, with the conjunction of axioms as antecedent and the atom "wet" as conclusion.

Axioms
1. I have a swimming pool.
2. If I have a swimming pool,

and it doesn't rain,
then I will go swimming.

3. If I go swimming,
then I will get wet.

4. If it rains,
then I will get wet.

Query. Do I get wet?

s-p: I have a swimming pool.
sw: I go swimming
wet: I get wet
rain: It rains

Propositional presentation

Axioms
1. s_.p
2. s-p & -,rain D sw
3. sw D wet
4. rain D wet

Query: wet?

A non-Horn problem

Figure 1

3

Figure 2 presents a demonstration that the query succeeds in our example problem using
the negation as failure protocol. The input is the program and query, using the not operator
employed by the negation as failure method. The deduction notation is a straightforward
extension of the Clocksin-Mellish notation (without periods, as no end-of-line markers are
needed). Step 4 is the subdemonstration attempt to prove the goal rain ; the failure to prove
this goal establishes the complement goal not (rain) and the original query succeeds. Notice
that the reasoning is invalid; axiom iv is not used here although it is needed for a valid conclu-
sion! It is relevant to later comparison that each not instantiation sets up a new proof search,
indeed one that must exhaust the search space for the intended negated conclusion to be
reached.

Program:
i) s.p.
ii) sw :- sp, not (rain).
iii) wet :- sw.
iv) wet :- rain.

Query. ?-wet.

Deduction:
0) ?- wet
1) :- sw by iii
2) :- sp, not (rain) by ii
3) :- not (rain) by i

4) ?- rain initiate new deduction
fail

5) Yes step 4) fails

Negation as failure

Figure 2

Figure 3 presents the ME approach to handling non-Horn clause sets. Clause ii) now has
the formal negation symbol rather than an operator for not, and the procedure incorporates the
standard semantics of negation of propositional and predicate logic. Contrapositives are needed
at least in sufficient number to insure that every negated goal also appear as the head of some
clause. (This is not quite strong enough.)

- #. - p - -p -n

4

Program
i) s.p.
ii) sw -p, -,rain.
iii) wet :- sw.
iv) wet :- rain
iv') -,rain :- -,wet contrapositive of iv

Query:
?- wet.

Deduction:
Aux List

0) ?- wet. 1
wet 1) sw by iii

sw,wet 2) s.p, -,rain by ii
sw,wet 3) rain by i

-,rain,sw,wet 4) wet by iv'
5) Yes mate in list

Model Elimination (PTTP) approach

Figure 3

The deduction mechanism uses an auxiliary list wherein the calling goal is added when the
body of the called clause replaces the calling goal in the next statement in the deduction. If any
goal of the called clause is complementary (a mate) to a member on the auxiliary list, then the
goal is not added to the new statement. (We represent it as added and then deleted, for clarity
of exposition). We note that the first-order case requires unification of incoming goals with auxi-
liary list members to be considered so branching of the process is necessary if a non-null substi-
tution is used. This is clearly necessary because the mating may be incorrect and the instantia-
tions in error. (If the mating involves no instantiation then deletion is always correct, so no
branching is necessary.)

The advantage of this procedure is clear; it is a direct extension of Prolog with a correct
semantics for negation. The disadvantages are the need for contrapositives in the input set
(which may include the negated goal on occasion) and the need to process the auxiliary list with
each call. Clever programming tricks (e.g., hashing predicate names) can greatly reduce the
average time spent processing the list but the list length grows with the depth of each branch of
the search tree, which can be extensive for many (most?) large programs.

Although the ME approach avoids the problem of the closed world assumption inherent in
negation by failure, the cost in computation time is apparently too great to make the ME
approach attractive in typical database settings. In particular, the full auxiliary list appears to
be needed even if the program is almost Horn, e.g. only one or two negations might appear in
the input clause set (before contrapositives are added). The system we introduce in the next
section has its computational effort grow no faster (and often more slowly) than the number of
negations that appear when prepared for the IE process.

l i ff i § F A b r k b o ~ ~ r k g L ~ f i g m r m U mI !

5

3. NAIVE nH-PROLOG.

The first distinguishing characteristic of the nH-Prolog methods is that no negation sym-
bol, contradiction symbol or negation operator need be formally introduced. (One device used is
close to a contradiction symbol in spirit, however.) The nH-Prolog system is a positive implica-
tion logic (all heads and goals are positive literals) but negated facts and similar constructs are
appropriately handled by a simple encoding. Indeed, any first-order formula in conjunctive nor-
mal form to be tested for unsatisfiability is easily converted to a program with a (dummy) query
which succeeds if and only if (iff) the clause set is refutable. In this section we present a variant
of nH-Prolog that lacks a refinement used in more effective nH-Prologs, so we call this variant
naive nH-Prolog.

The sole new architectural feature to the input set (program) relative to Prolog is the use
of multiple heads instead of a single head. If a clause has multiple heads they are separated by
a semi-colon, the Edinburgh (Clocksin-Mellish) symbol for "or", which is the correct semantics.

Figure 4 presents our example in the format for nH-Prolog. The second clause is now a
modification of the sentence it captures, i.e. "If I have a swimming pool and it doesn't rain
then I go swimming". The modification, made because negation is not directly expressible, is to
encode the equivalent sentence "if I have a swimming pool then either it rains or I go swim-
ming". It is a well-known valid transformation to change literals to the opposite side of an
implication while deleting or adding a negation sign.

Program:
i) s..p.
ii) sw; rain :- sp.
iii) wet :- sw.
iv) wet :- rain.

Query: ?- wet.

Deduction:
0) ?- wet
1) :- sw by iii

2) :- s-p # rain by ii
3) :- # rain by i
4) :- wet # rain restart
5) :- rain # rain by iv
6) Yes cancel

nH-Prolog

Figure 4

We now discuss the manner of deduction for naive nH-Prolog as illustrated here. As usual,
one begins with the query, which calls a clause in usual Prolog fashion (line 1). Goal sw calls
clause ii which has two heads. In clause ii sw is the called head and rain is the auxiliary head.
(In general there may be more than one auxiliary head in a clause.) The body of the clause
replaces the goal, in normal Prolog fashion. The auxiliary head is written to the right of the #
sign, called the wall, and is referred to as the deferred head. The leftmost goal then calls a

- .

clause to continue the deduction. When a line is reached with no goals and no deferred heads,
the deduction is succ -- sfully completed. If the line has only deferred heads, then a block is com-
pleted and a new block begins by reentering the query as a single goal, while retaining all
deferred heads from the previous line. All blocks but the first are called restart blocks because
one restarts with the query. (The first block is the start block.) Thus line 4 is labeled "res-
tart". Goal wet can call clause iv with goal rain as its body. Whenever a goal agrees with (is
identical to) the leftmost deferred head both the goal and the deferred head are removed by an
action called cancellation. (In the first-order case this would involve unification and, if a proper
substitution is made, branching of the process will occur.) In this example this leaves no goal or
deferred head so the query succeeds.

The device of recording deferred heads and deferring attention to them until all goals and
their descendents are removed, together with the cancellation method for elimination of deferred
heads, constitutes the mechanism of nH-Prolog. There are conditions and concerns which we
address below, and an added mechanism is used when we leave naive nH-Prolog. At this time
we point out the conceptual simplicity of this addition and emphasize the advantage of defer-
ring action on the non-Horn part until the Horn part is completed. Normal backtracking will
occur from many false paths by the standard Prolog mechanism and the deferred heads are pur-
sued only when the goal set is empty. There is an added literal to check at each call, the left-
most deferred head. (However, not all deviations from a Horn clause set introduce auxiliary
heads, as we see later.)

We present here the form of a successful deduction, not methods for search for that deduc-
tion. This is customary in presenting logic systems. Many possibilities exist within this frame-
work, not surprisingly. Since our primary motivation is to minimally extend Prolog the primary
search mode we have in mind is depth-first search within each block, with usual backtracking
upon failure. We call clauses in program order as Prolog does. We have indicated goal selection
and deferred head selection order, which can be varied but is in keeping with Prolog conven-
tions. (Canceling with an arbitrary deferred head brings up subtle issues not even hinted at
here, but that variant has been considered.) Regular nH-Prolog initializes restart blocks
differently; control strategies at those points are considered later.

To help the reader understand the declarative semantics of the nH-Prolog procedures we
include a proof of soundness in this paper. Intuitively, the rough idea is simple. The start
block represents a simple problem reduction proof that the query follows from the program as if
the deferred heads did not exist. Each restart block ensures that the query still follows if the
particular deferred head literal is true rather than the disjunctive partner used in the start
block. Thus a form a splitting rule is being invoked. (However, the efficiency issue is more
complex. It is like invoking the splitting rule only when one branch is trivialized. Amplification
of the point is beyond our present space resources.)

Several conditions accompany the cancellation rule. Only (the descendents of) the leftmost
deferred head at the restart line can be canceled within the block. Ve call the deferred heads of
the restart time (and their descendents) eligible deferred heads although only the leftmost such
actually may be used in canceling in the block. Newly created deferred heads of the block are
ineligible for cancellation in the block and can be regarded as added at the end of the block, to
the left of the existing deferred head list. The leftmost eligible deferred head can be used to
cancel several goals, made identical by unification. (In hand proofs we have added new deferred
heads to the deferred head list as created, and use some separating mark between the eligible
and ineligible deferred heads.)

1-

%f

7

We also remark that no merging of goals or of deferred heads is needed, although merging
can be done. If two deferred heads are identified the leftmost one must be the one retained, in
part because one cannot break the "no cancellation of deferred heads in their introductory
block" rule. The reason that it is desirable to not require merging is that at the general (first-
order) level this is the factoring operation of resolution. That is, were merging required one
would have to branch whenever a proper substitution would allow merging, because the alter-
nate that the heads are not to be identified also must be considered.

We shift to a new, and trivial, example in Figure 5 to illustrate how negated facts are han-
dled. The fact -,a is replaced by b :- a with the following justification: Given that -a is
true, then a implies anything so we will use a D , written b :-a, where b is the query. That is,
"the query if a " is implied by the fact -,a. An indeterminant fact -,a V -,c would be
represented as b :-a ,c, where b is the query, because if -,a or -,c is true, then a & c Db.
Clearly, any disjunction of negative literals can be so represented. Thus we now know that
every clause in a Skolem conjunctive form formula or clause set (i.e. the input to a resolution
process; see [8]) can be transformed into the nH-Prolog format. Observe that every unsatisfiable
clause set has at least one negative clause which, when transformed, has a (sometimes dummy)
query as its head. Thus every unsatisfiable clause set translates into a sensible nH-Prolog pro-
gram with query. As previously stated, there is an nH-Prolog deduction that will demonstrate
that the query succeeds if the program comes from an unsatisfiable clause set. This is a com-
pleteness statement, and there is an issue regarding search control here. We postpone discussion
of this point. We mention that there is a mechanism for overcoming the apparent disadvantage
of naming the query in the program.

Axioms:
A V B
-,A

Query: B

Program:
i) a;b.
ii) b .- a. denotes -a

Query: ? -b

Deduction:
0) ?-b
1) :-#a by i
2) :- b # a restart
3) :-a#a byii
4) : Yes cancel

Negated facts

Figure 5

We turn briefly to consider efficiency of computation relative to negation as failure. Nega-
tion as failure requires in effect a restart, attempting to prove the goal whose negation is
asserted. A deferred head is in effect a negated goal and also involves a restart. Thus, on a
rough scale there is comparable effort. However, nH-Prolog restarts involve comparisons against
a deferred head list. On the other hand, negated facts do not generate deferred heads. Also, we
suggest later an implementation format that avoids a full restart. Thus, which approach is
more efficient awaits implementation experience.

We finally give a non-propositional example, in Figure 6. The example is very short but
non-trivial in that an indefinite answer is expected. Notice that this is handled naturally in
nH-Prolog by the two query entries. Each query requires a different substitution to execute the
block in which the query is introduced. The disjunction of the query under all required substi-
tutions is the appropriate answer. When one leaves the Horn clause domain one must be
prepared for indeterminant answers.

Show:
P (a) \/ P (b) D xP (x)

Program:
i) p (a);p (b).

Query:
?-p (X).

Deduction:
0) ?- p(X)
1) :-# p(b) X - a
2) :- p(Y) # p(b) restart (new variables)
3) :- Yes Y--b

X =a or X =b

Answer: p(a)V p(b)

Figure 6

It is instructive for the reader to compare this presentation of the problem of Figure 6 with
the presentation of the same problem in (13], where the Prolog Technology Theorem Prover
represents the way on ME system handles this problem. In this case the nH-Prolog system is
somewhat more natural.

4. nH-PROLOG.

Whereas naive nH-Prolog has pedagogical value it is both incomplete and relatively
inefficient. Since the complete form of nH-Prolog is an extension of a more efficient Prolog, we
want to implement a modification of the procedure of the previous section. We will specify nH-
Prolog in a more formal manner and then outline the associated Soundness Theorem, which
establishes that nH-Prolog only gives correct answers.

J.

The primary modification is to possibly begin restart blocks with literals other than the
query. These literals are, in a suitable sense, ancestors of the leftmost deferred head, which is
the active deferred head. We define an ancestor list associated with each deferred head to be
the ancestor list at the beginning of the block (which is empty for the start block) together with
all the ancestor calling literals to the line that accepts the new deferred head.

Again, we present the procedure without control structure regarding choice of clause, to
which we add a nondeterminism in choice of initial literal to begin a restart block. We do
specify literal order within the continuation (the literals to the left of the #) and in the deferred

head list within the line. Thus we present the correct conditions for a successful derivation, and
leave search considerations to later.

Characteristics of an nH-Prolog deduction.

1. The first line contains only the query.

2. If line n contains a goal (i.e. the continuation is non-empty) then the leftmost goal is the
calling goal. Line n+1 replaces the calling goal by the body of the called clause, otherwise
inheriting the continuation of line n. As always, unification determines the proper instan-
tiation, which is applied uniformly to all literals, in the continuation, the deferred head list
and the ancestor list. The deferred head list is inherited from line n, with the possible
addition of auxiliary heads from the called clause, the new deferred heads placed leftmost,
to the right of the wall, but ineligible in this block. The new deferred heads are said to be
defined at this line. The ancestor list for line n+1 is the ancestor list of line n plus the
(instantiated) calling goal contained in line n. No merging of goals or deferred heads is
required, but is optional; goals merge right, and deferred heads merge left.

3. A restart line follows a line with an empty continuation (no goals). The restart line has
the deferred head list of the previous line. The ancestor list for this line is the ancestor list
of the defining line of the leftmost deferred head of this restart line. The continuation is a
literal chosen from the ancestor list for this line. (Note that the ancestor list may be a
superset of the ancestor goals of the literal of the continuation.) However, the original
query with new variables is used in place of the current instantiation of the original query
when a query variant is required.

4. Each viable restart block contains one or more cancellations, all involving (instantiations
of) the leftmost eligible deferred head of the current line and a literal of the body of the
called clause used to create the line. The deferred heads canceled are always descendents
of the same deferred head, the leftmost deferred head of the restart line. Thus each block
yields a cancellation of precisely one deferred head, including various instantiations of that
head. Unification may occur to allow cancellation. (Cancellation may be restricted to the
leftmost literal of the continuation to speed processing.)

5. A line containing no deferred heads or goals is the concluding line of a successful deduc-
tion.

We now outline the soundness of the nH-Prolog system. A key notion in the proof is that
of a query being falsifiable under a program. A query q is falsifiable under program P iff there is
truth assignment to each literal such that q has (all instances with) valuation F and (every
instance of) each clause of P has valuation T. \Ve will show that an nH-Prolog deduction cannot
terminate successfully if the query is falsifiable under the program.

Soundness Theorem. nH-Prolog is sound, i.e.. if there is a successful nH-Prolog deduction of

p-

p s &~Ri;

query q from program P then an instance of q is logically implied by P.

Proof. First, we note that each deduction has a ground propositional deduction counterpart.
Each time an instantiation occurs due to a non-null unification, the instantiation occurs
throughout the deduction, including the deferred head lists, the ancestor tests, and all previous
lines. (Of course, this need not be explicitly clone in implementations.) Restart blocks start
with the current instantiation. When the deduction concludes, assign an atomic constant to
each variable uniformly.

Therefore, it suffices to argue soundness at the propositional level. We assume that we
have a query q and ground program P for which a deduction has terminated successfully and
that the q is falsifiable under P, to show this leads to a contradiction. We invoke the truth
assignment that falsifies q; all references to values of literals now are to truth-values under this
assignment.

We define a critical head h to be a deferred head with value T such that all literals in the
ancestor list at the defining line for h have value F.

We prove the following statement by induction.

P(n): At line n either the continuation has (a literal with) value F or a critical head exists in the
deferred head list.

Note that if P(n) holds for all n then the deduction cannot terminate successfully (as it
never has an empty line), a contradiction.

Case 1. Start block. The continuation at line 1 has value F by definition because q has
value F. Consider the clause q calls. Either there is an auxiliary head with value T (hence a
critical head at line 2) or the disjunction of heads has value F so the clause body contains a
literal with value F. Since a critical head, once created, cannot be removed in its block of intro-
duction, we need only consider the alternative, that a false goal (goal with value F) exists at

* line 2. Choose the leftmost false goal g. All clauses until g becomes leftmost have a false con-
tinuation. When g calls a clause we have the same situation as when q was calling goal. Since
now only q and g are ancestors, either a critical head is created or a new false literal is intro-
duced into the continuation. This argument pertains to the remaining lines of the block. The

, block terminates with a critical head in the last line because the continuation is empty.

Case 2. The restart block does not have the critical head leftmost. Since only the leftmost
deferred head is canceled, the critical head remains through the block.

Case 3. The restart block has the critical head leftmost. The ancestor list for the initial
line of this block has all false literals because it is the ancestor list of the defining line for the
critical head that is leftmost. Thus the initial continuation has value F. The argument follows
that of the Start Block. One must notice that the cancellation does not endanger the develop-
ment of the block because the critical head has value T so no false goal will be canceled. The
all-false-literals of the initial ancestor list allows a critical head to be created following the argu-
ment of the Start Block. 0

5. IMPLEMENTATION.

Although nH-Prolog is complete (see '91) when a full unification is used and iterative
deepening (or any equivalent search strategy) replaces depth-first search, we here are less

Irk,.- -""-... - :"""-..- '"-

11

concerned with completeness than with minimally extending Prolog and with practical
effectiveness, including speed of execution. For a description of a first implementation see [12}.
The implementation, built directly on top of Prolog, uses depth-first search and has the option
of full unification. Within a block the depth-first search is classical, identical to that of Prolog.
The initialization of restart blocks involves some control decisions as to element of the ancestor
list picked and the search starting point. We have adopted a less conventional strategy here,
unusual enough to warrant labeling the variant; we call this version progressive nH-Prolog. We
select as the initial goal the calling goal of the clause that defines the leftmost deferred head of
the restart block, and, upon failures, work back up the ancestor list, deleting tried goals from
the list. (This introduces a possible incompleteness; see [9]). Also, we begin the search for the
next called clause not at the beginning of the clause list but at the clause following the defining
clause for the leftmost deferred head (See [12]). Search stops at the last clause; currently, we do
not wrap around to continue from the top. Although this introduces some extra incomplete-
ness, there is evidence that the lost deductions are relatively few, due to multiple proof paths,
and certainly the speed gain appears significant. (The wraparound is easily installed and is now
an option.) Experimentation will confirm or refute its value of these devices.

Other implementation devices improve performance or convenience, such as the use of a
system query to allow compilation of a program independent of the query (queries) asked.
Clauses from negated facts can be built in. Space limitations forbid further discussion of these
devices (see [9],[12]).

ACKNOWLEDGMENT
We thank Bruce T. Smith for several stimulating conversations regarding nH-Prolog, and

for insights that led to improvements in Progressive nH-Prolog.

12

REFERENCES

[1] Clark, K.L. Negation as failure. Logic and Databases (eds. Gallaire and Minker), Plenum
Press, New York, 1978, 293-32 1.

[2] Clocksin, W.F. and C.S. Mellish. Programming in Prolog, (2nd edition). Springer-Verlag,
Berlin, 1984, xv + 297 pp.

[3] Gabbay, D.M. and U. Reyle. N-Prolog: an extension of Prolog with hypothetical implica-
tions, 1. J. Logic Programming 4, 1984, 319-355.

[4] IEEE Proceedings of the Symposium on Logic Programming, Boston, Mass., July, 1985.

[51 Kowalski, R. Robert Kowalski on logic programming. Future Generations Comp. Systems
1 (1), 1984, 79-83.

[6] Kowalski, R. and D. Kuehner. Linear resolution with selected function. Artif. Intell. 2,
1971, 227-260.

[7] Loveland, D.W. Mechanical theorem proving by model elimination. J. ACM 15, 1968, 236-
251.

[8] Loveland, D.W. Automated Theorem Proving: a Logical Basis. North-Holland, Amsterdam,
1978, xiii + 405 pp.

[91 Loveland, D.W. Near-Horn Prolog and beyond. Forthcoming paper.

[10] Plaisted, D. A simplified problem reduction format. Artif. Intell 18, 1982, 227-261.

[11] Plaisted, D. Non-Horn clause logic programming without contrapositives. Preprint.

[12] Smith, B.T. and D.W. Loveland. An implementation of near-Horn Prolog. Forthcoming
paper.

[13] Stickel, M.E. A Prolog Technology Theorem Prover: implementation by an extended Pro-
log compiler. Eighth Int'l Conf. on Auto. Deduction, Lecture Notes in C.S. 230, Springer-Verlag,
Berlin, July, 1986, 573-587.

.s~~SS. o~. ',0 ?3 5 '.sAGE AN 191 7;k-
REPORT DOCUMENTATION PAGE

REPORT4 5Sf'* CLASstFCA7 QN 10 FIESAIICT VE #AAR9NGS

1. SSECLN~i' CLASSitiCATIO% _UITP40AiTV 3 O,STIfION.,AVA, LASUILTV Of REPORT

2b OILCLAMSP ICATiOF4, D0WNINGNA~lDO SC0MIOULIE Unclassified

Ag

ftM FPERFORMINGO ORGANIZATIONE OPPICE SYMBOL 7&. NAME Of MONITORING ORGANIZATION4
Duke Vniversity hIII PdwAWeI

Computer Science Dept. _______ Army Research Office
S.ADDRESS $City Stae. sad ZIP COO)t 7b. ADDRESS ity'. Soooft end ZIP Code)

* P.O. Box 12211
Durham, NC 27706 Research Triangle Pk., NC 27709-2211

SL "A"I OF PNINOING/SPONSON,1 NG OPPFICE SYMUOL 9. PROCUREMENT INSTRUMENT IO1ENTIPICATION NUMBERI
ORGANIZATION4II~ ~~e

~ ~~u 'e,,.Sle mm ZIPCee, IGrant DAAG29-84-K-0072
So; ODRIS faly.SIGN do ZI Cefj 1 SOURCE OfF PUNDING 'N0O

PROGRAM PROJECT TASK WORK UNI)T

@LEWIN? 06O NO0 NO No

11. TI iLI fdMorloodo SCUIty CIammzwAen

Near-Horn Prolog______

12.PSSOAL UTORS)D.W. Loveland
13& TYPE Of REPORT 138. TIME COv11111O 146. OATS Of REPORT iYr.. Me.. Booty IiPACE COUNT

Technical I P M ____ To____ April 1987 ii + 14
MS SUPPLEMENTARYV NOTATION

Talk presented at the Fourth Int'l Conf. on Logic Programming, Melbourne, May 1987

17 COlA?' CODES it SUBJECT TERMS Iceomea onemorm If mwmamm o &Mary by B10ork 1mbri~

FIELD GROUP $210 am. jProlog, Logic Programming, Intelligent data bases

*9lEITIIATT rCo.t~ n em ioip ieamVy gd Kdpoof 67 Werc mIn~

4propose A n extension to Prolog that handles clause sets that are Horn and

almost-Horn in a manner that emphasizes clarity, efficiency, and minimal deviation
from standard Prolog. Although one version of near-Horn Prolog is complete under
appropriate search strategies, we focus on incomplete variants that allow fast
processing. Negation in the program is handled correctly, although within a positive
implication logic extension of Horn logic. Processing speed degradation is directly
proportional to the distance the progra is from a Horn clause set.

20 OfSTRIGuTIONAVAILABILTY OP ABSTRACT 21 ABSTRACT SECUNATY CLASSIFICATION

UP4CLASSIFIEDIUNLIMITED 2SAME AS NOT [3 OTIC USERS

22a, NAME Of RESPONSI86E INCIVICUAL 2211 TELF.'O" NUMBER 22c OFFICE SYMBG,

Donald W. Loveland 4-684'Rd4r

DD FORM 1473.863 APR EDITION OP I jAN1 73 iS OBSOLETE

SECURITY CLASSIP.CATION. OF T..AGE

4%

